Reflection from curvedminors
2 types of miners Concave and Convex

Rays of light parallel to the principal axis will reflect from a concave mirror to a single point "f" called a local point
Ans focal point is $\frac{1}{2}$ the distance fran the centre and the curvature
IT In the same way

Waves (via Valued Acer Customer) Page 1

lays on light parallel to the - Principal axis will reflect from a convex mirror as if they came frow a single point. as if they come from the focal pt. of the concave mirror

lays on light parallel to the - Principal axis will reflect from a convex mirror as if they came frow a single point. as if they carve from the focal pt. of the concave mirror

I concave minors can be thought of as a converging mirror convex $"$ " $"$ " diverging mirror
\checkmark The focal pt of a concave mirror is called real focal pt
A real local point is where rays of light actually converge - notice the dashed lines intersecting the local pt for convex. mirror, those rays don't actual y exist.
the radius of the curvature is the distance Prom the centre to the mirror a vertex.

Sample Ray diagrams (Need to memorize)

say parallel to the prince pal axis will go through "F"

or

ray going through the focus will always be parallel to the principal axis

Waves (via Valued Acer Customer) Page 2
waves Page 2

convex mirror
if a ray parallel to the principal axis will strike the mirror light diverge away with an angle as if it care from a local point

a ray striking a convey mirror at an angle as if going through a focal pt will relent parallel to the principal axis

a cay through the centre of a curvature will reflect back clang the same path

Sample diagrams need to memorize
object "o" Pg 298

Image "-"
This is a case where the object is beyoull the centre
The result is an inverted in age that is real but smaller

If the object is on the centre The result is an inverted and real and exactly the save

If the object is between the centre and the locus, the result is an in vested image that is real and largll than the aiginal

if the dyiect is on the focolpt
There will be no image, the rays de not intersect.

Inure When the object is between the focus and thy
waves Page 3

If the object is between the centre and the locus, the result is an inverted image that is real and larges than the aiginal

if the dyiect is on the focal pt
There will be no image, the rays de not intersect.

when the object is between the focus and the moncave mirror the image is erect, large then the object and virtual

Just the opposit of the previous case
The image is erect and virtual and smaller

Mirror equations we play with

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{d_{0}}+\frac{1}{d_{i}} \quad \text { and magnification }=\frac{h_{\text {eight olimas }}}{\text { heightolorgect }}=\frac{h_{i}}{h_{0}} \\
& \text { or } \frac{\text { distance of image frommiror }}{\text { distance of object ram mirror }}=-\frac{d_{i}}{d_{0}}
\end{aligned}
$$

Waves (via Valued Acer Customer) Page 4
magnification $\underset{h_{0}}{\Rightarrow}$

$$
\begin{aligned}
\text { magi fiction } & =\frac{-d_{i}}{d_{0}} \\
\text { or } \frac{h_{i}}{h_{0}} & =\frac{-d_{i}}{d_{0}}
\end{aligned}
$$

ex) an object 3.00 cm tall is placed 10.0 cm in front of a concave mirror that has focal length of 3.0 cm find $d i$ and magnification

$$
\begin{array}{rlrl}
d_{0}=10.0 \mathrm{~cm} \quad h_{0}=3.00 \quad f & =3.0 \mathrm{cw} \quad d_{i}=? \\
\frac{1}{f}=\frac{1}{d_{0}}+\frac{1}{d_{i}} \Rightarrow \quad \frac{1}{d_{i}} & =\frac{1}{f}-\frac{1}{d_{0}} \\
& =\frac{1}{3.0 \mathrm{~cm}}-10.0 \mathrm{~cm} \\
d_{i} & =\frac{1}{.23} & \frac{1}{d_{i}} & =\frac{10}{30}-\frac{3}{30} \\
& =4.2^{8} & \frac{1}{d_{i}} & =7 / 30
\end{array}
$$

find h_{i}

$$
\left.d_{l}=30 / 7 c\right\} \begin{aligned}
& \text { Eve value indicates } \\
& \text { real image }
\end{aligned}
$$

$$
\begin{aligned}
\frac{h_{i}}{h_{0}} & =\frac{-d_{i}}{d_{0}} \\
=h_{i} & =\frac{-d_{i} h_{0}}{d_{0}} \\
& =\frac{\left(-\frac{30}{7}\right)(3.0)}{10 \mathrm{~cm}} \\
h_{i} & =-1.3 \mathrm{~cm} \quad\} \begin{array}{l}
\text { Gluc value indicates } \\
\text { inverted. }
\end{array}
\end{aligned}
$$

$$
\operatorname{Pg} 303 H(-1100 d 0(2-110 d d)
$$

Waves (via Valued Acer Customer) Page 5

Refraction fran lenses

Terms
double concur lease

double convex flense

"0" optical centre
"r" 1 C. . L

Refraction fan lose
Terms
double concave lease

"0" optical centre
"f" feces ph s
light is refracted the following ways

why?

why?
rays parallel to the principle axis will be refracted by the lens s.t. the ret result will be converging through a focal pt in a convey bors a diverging through a concave lens

Waves (via Valued Acer Customer) Page 6
waves Page 6

a ray through she optical centre does not change direction

Sample diagrams for convex lenses

when an object is placed at a distance greater than 28 , the image is insulted and smaller then the object one is real

When on object is placed at $2 f$, the image is inverted, same size as the object and real
as the object and red

when an object is placed between of and f the inge is inverted, large than the object and real

when the object is placed a l no image is produced

When an object is inside f, the image is erect, larger the the object and rirtvat

ex) an object 2.5 cm bal is placed 15 cm from a convex lens if the local length is 7.5 cm
determine d_{i}, hi $\quad h_{0}=$ height object $h_{i}=$ height
a) $\frac{1}{f}=\frac{1}{d_{i}}\left(\frac{1}{d_{0}}\right) \Rightarrow$

$$
\begin{aligned}
& \frac{1}{d_{i}}=\frac{1}{f}-\frac{1}{d_{0}} \\
& \frac{1}{d_{i}}=\frac{1}{7.5}-\frac{1}{15} \\
& \frac{1}{d_{i}}=\frac{1}{15} \quad d_{i}=15 \mathrm{cr}
\end{aligned}
$$

b) $\frac{h_{i}}{h_{0}}=-\frac{d_{i}}{d_{0}}$

$$
h_{i}=-\frac{d_{i} h_{0}}{d_{0}}=-\frac{(15)(2.5)}{15}=-2.5 \mathrm{~cm}
$$

Since $d i=$ blue image is real
$h_{i}=\Theta^{\prime}$ ie image is inverted
$h_{i}=h_{0}$ in magnitude :. the sars site
ex 2) $8333^{37} h_{h_{0}}=6.0 \mathrm{~cm} \quad d_{0}=9.0 \mathrm{~cm} \quad f=8.0 \mathrm{~cm}$ find d_{i}, h_{i}

$$
\therefore \frac{1}{n}=\frac{1}{1}+\frac{1}{2} \Rightarrow \frac{1}{1}=\frac{1}{4}-\frac{1}{4}
$$

Waves (via Valued Acer Customer) Page 9
a) $\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{i}} \Rightarrow \frac{1}{d_{i}}=\frac{1}{f}-\frac{1}{d_{0}}$

$$
\begin{aligned}
& =\frac{1}{8}-\frac{1}{9} \\
\frac{1}{d_{1}} & =\frac{1}{72} \quad d_{i}=72 c\llcorner
\end{aligned}
$$

b) $\frac{h_{i}}{h_{0}}=\frac{-d_{i}}{d_{0}}$

$$
h_{i}=\frac{-d_{i}}{d_{0}} h_{0}=\frac{(-72)(6)}{9}=-48 \mathrm{~cm}
$$

invented, larger, real
4) $\quad h_{0}=3 \mathrm{or} \quad d_{0}=6 \mathrm{~cm} \quad h_{i}=1 \mathrm{c}-$
a) $\frac{h_{i}}{h_{1}}=\frac{-d_{i}}{d_{0}}$
$\frac{1}{3}=\frac{-\left(d_{i}\right)}{600} \quad d_{i}=-2 c-\quad \therefore$ virtual
focal lonsthe

$$
\begin{aligned}
\frac{1}{f} & =\frac{1}{a_{i}}+\frac{1}{a_{0}} \\
& =\frac{1}{-2 c r}+\frac{1}{6} \\
\frac{1}{f} & =-.33 \\
f & =-3 n 3
\end{aligned}
$$

6) $d_{0}=80 \mathrm{~cm} \quad r=8.0 \mathrm{cr} \therefore f=4.0 \mathrm{~cm} \quad$ Magnification?

$$
\begin{array}{rlr}
\frac{1}{f} & =\frac{1}{d_{0}}+\frac{1}{d i} & \text { need } d_{i} \\
\frac{1}{d_{i}} & =\frac{1}{f}-\frac{1}{d_{0}} & \text { Magnintiation }=\frac{d_{i}}{d_{0}}=
\end{array}
$$

waves Page 10

$$
\begin{aligned}
& =\frac{1}{4}-\frac{1}{8} \\
d_{i} & =\frac{1}{8} \\
d_{i} & =8 c r
\end{aligned}
$$

w/B PT 33-3-1300d

$$
\text { try } 41 \text { is } 335
$$

try Additimal ex $27342-348$ all Practice test
\#3 pa 337

$$
\begin{aligned}
& \text { \#3 ph str } \\
& h_{0}=5 \mathrm{~cm} d_{0}=4.5 \quad f=4.5 \mathrm{cr} d_{i}=? \\
& \frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{0}} \mathrm{NO} \mathrm{Sol} \\
& \frac{1}{4.5}=\frac{1}{d_{i}}+\frac{1}{4.5}
\end{aligned}
$$

Ps 332 sign Conventions lo r leases
real local pts Θ^{\prime} ie
virtual localpts Θ live
erect images Θ lie
inverted images $\Theta^{\text {live }}$

$$
\begin{aligned}
& p \| 324 \# 23 \\
& v=3 \times 10^{8 \mu} / s \quad \lambda
\end{aligned}
$$

ex) An object is 32 cm to the left of a convex lens with focus fem find $d i$

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{d_{0}}+\frac{1}{d_{i}} \\
= & 11 \mathrm{~cm}
\end{aligned}
$$

